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Introduction 6 

 7 

Mixed stock analysis methods for estimating stock (population) compositions in fisheries have evolved 8 

over time from conditional maximum-likelihood (Fournier et al. 1984) to Bayesian (Pella and Masuda, 9 

2001) approaches. The Pella-Masuda model (a Bayesian approach; Pella and Masuda, 2001) has been the 10 

“gold standard” since 2001. In these methods, however, bias is inevitable because the estimation of the 11 

stock proportions is constrained to be non-negative and sum to one, meaning that rare or absent stocks in 12 

the mixture are overestimated while common stocks are under estimated (Pella and Milner, 1987).  Stocks 13 

are usually grouped into regional stock groupings (regions) for reporting. 14 

Recent observations in our laboratory indicate that disproportionate numbers of stocks within a region can 15 

lead to significant bias in regional composition estimates when regional stock structure is shallow. We 16 

have observed that regions represented by large numbers of stocks seem to acquire higher misallocations 17 

than regions represented by fewer stocks (Figure 1). This bias can be reduced at the regional level by 18 

grouping stocks with similar genetic attributes into regions, then summing estimated proportions across 19 

stocks within the regions (Wood et al. 1987). Here we present a rationale for why we think the observed 20 

non-uniform bias occurred and a method that appears to improve allocation at the regional level as well as 21 

distribute the misallocation more evenly among regions. 22 

In the Pella-Masuda model, the data augmentation algorithm is used to generate from the posterior 23 

distribution the stock identities of each of the mixture individuals, and then generate the stock proportions 24 

and baseline allele frequencies based on summaries of these identities. At each cycle of the algorithm, the 25 

stock identity of mixture individual m is stochastically assigned to stock i with probability proportional to 26 

the product of stock i’s contribution to the mixture and the relative frequency of individual m’s genotype 27 

in stock i. This means that individual m has a finite probability of belonging to each and every stock in the 28 

baseline. We will refer to these probabilities as the identity probabilities.   29 

The chances that individual m is assigned to the correct stock at a particular iteration is a function of not 30 

only the genetic distinction of its stock, but also, theoretically, the number of stocks in the baseline. 31 

Fortunately, fisheries managers often are not interested in the proportion of individual stocks, but rather in 32 
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the contribution made by all stocks within regions. If the stocks within a region are genetically more 33 

similar to each other than to stocks in other regions (strong regional structure), then the chances of 34 

correctly assigning an individual to a stock within the correct region each cycle greatly improves 35 

estimation (Wood et al. 1987). However, with weak regional structure, the chances of assigning an 36 

individual to a stock within the correct region may be significantly influenced by the number of stocks in 37 

each region. This may be because the probability of assigning an individual to a particular region is the 38 

sum of the identity probabilities across all the stocks in the region, such that adding stocks adds 39 

probability. If the amount of misallocation to a region is a function of the number of stocks within that 40 

region, an inherent non-uniform bias in regional contribution estimates can occur simply due to differing 41 

numbers of stocks among regions.  42 

The purpose of this paper is to illustrate that unequal numbers of stocks among regions leads to unequal 43 

biases in misallocation and to determine if a new analytical method may mitigate this bias. We anticipate 44 

an upward misallocation bias toward regions that are represented by larger numbers of stocks than regions 45 

represented by fewer stocks using the Pella-Masuda model.  We present a new analytical model that 46 

appears to diminish this bias.  47 

 48 

Methods 49 

 50 

We considered three methods to examine the assertion that unequal numbers of stocks within regions do 51 

not affect bias in misallocation. We selected baseline data for chum salmon stocks from Western Alaska. 52 

These data were chosen because these stocks represent weak regional structure (Figure 5). 53 

The first two methods use the Pella-Masuda model but differ in how the priors are assigned. The first 54 

method is the widely used True Flat Prior (TFP; Pella and Masuda, 2001). This model provides no a 55 

priori information about the regional structure and gives an equal prior “count” of 1/C to each of the 56 

stocks in the baseline, where C is the number of stocks. This is the model that provided the recent 57 

observations in our laboratory that suggested that disproportionate numbers of stocks within a reporting 58 

group can affect the regional composition estimates.  59 

The second method, termed the Regional Flat Prior (RFP), is a method currently in use at ADF&G’s 60 

Gene Conservation Laboratory (Dann et al. 2009). The structure of the prior for stock proportions is an ad 61 

hoc alternative to the TFP. Under the RFP, for each of the stocks within the gth region, we give a prior 62 

“count” equal to 1/G/Cg, where G is the number of regions and Cg is the number of stocks within the gth 63 

region. Therefore, equal prior “count” is given to each region, but the prior “count” given to a stock is 64 

dependent upon the number of stocks within its region.   65 

The third method, termed the Regional Allocation Model (RAM), is currently under development at the 66 

Gene Conservation Laboratory. This model is very similar to the Pella-Masuda model in that it is based 67 

on the data augmentation algorithm that alternates between generating of the parameters of the model. 68 

The difference is that in the RAM, we first generate the regional identity of each individual, and then 69 

produce regional contributions based on summaries of these regional identities. For individual m, the 70 

regional identity probability of belonging to region g is proportional to region g’s contribution to the 71 
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mixture times a weighted average relative frequency of individual m’s genotype across all Cg stocks 72 

within the region. The weights are simply the within-region stock proportions, and they sum to one. 73 

Because the weights do sum to one, the genetic component of the regional identity probabilities remain on 74 

the same scale regardless of the number of stocks within the region, which should presumably moderate 75 

the non-uniform bias due to the unequal distribution of stocks among the regions. There is actually a 76 

second stage to the data augmentation algorithm in which, after an individual is assigned to a region, it is 77 

then allocated to a stock within that region. This is done exactly as is done in the Pella-Masuda model 78 

except that it is done with respect to a baseline that is reduced to only that region.  79 

General Bayesian Methods 80 

For estimating parameters θ from data X using Bayesian methods, we aim at the evaluation of the 81 

posterior distribution P(θ|X) = L(X|θ) P(θ)/m(X), where L(X|θ) is the likelihood of the data given the 82 

parameters, P(θ) is the prior distribution of the parameters, which must be specified, and m(X) is the 83 

constant marginal distribution of the data. From this distribution, summary statistics for θ can be derived. 84 

However, these distributions are rarely soluble in closed form for multidimensional parameter vector θ, 85 

and we must rely on drawing samples from it via a Gibbs sampling routine, from which the summary 86 

statistics can be calculated. For mixed stock analysis, θ represents the stock proportions and the baseline 87 

allele frequencies while X corresponds to the mixture genotypes and the baseline allele counts. As 88 

mentioned previously, a prior distribution must be specified for the parameters. In the forthcoming 89 

models, the mathematically convenient Dirichlet distribution is used for the stock proportions as well as 90 

the baseline allele frequencies. A Dirichlet distribution with parameter vector λ is a distribution on a 91 

vector W whose sum is constrained to one. It has the form: 92 

 93 

 94 

The Pella-Masuda Model 95 

We denote the count of the jth (j=1,2,…,Jd) allele of the dth (d=1,2,…,D) locus for mixture individual m 96 

as xmdj, and let Xm signify the entire multi-locus genotype for this individual. The array X represents the 97 

multi-locus genotypes for all M mixture individuals. Similarly, we let yidj denote the count of the jth allele 98 

for the dth locus of the ith baseline stock, and Y denotes the entire baseline. This describes the data.  99 

To describe the parameters, let the stock proportion for the ith stock be denoted as Pi, and let P be the 100 

vector of all stock proportions. We place a Dirichlet prior distribution on the stock proportions with prior 101 

parameters α, where αi is determined by our choice of prior structure discussed earlier (RFP or TFP).  102 

We let qidj denote the relative frequency of the jth allele for the dth locus in the ith baseline stock and let 103 

Q denote the entire array of baseline relative frequencies. We place a Dirichlet prior distribution on Qid 104 

with prior parameters βd, where βdj = 1/Jd, with Jd being the number of alleles for locus d.  105 

Finally, let zmi be the stock identity for the mth mixture individual in the ith stock, where zmi is equal to 106 

one if individual m belongs to the ith stock and zero otherwise. We denote Zm as the vector of stock 107 
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identities for individual m, and Z as the matrix of stock identities for the entire mixture. We place a 108 

multinomial prior on Zm with size 1 and probabilities equal to the stock proportions P.  109 

The genotypic likelihood of the mth individual would be greatly simplified if we knew the stock identity 110 

of that individual. In other words, if zmi = 1, then the likelihood of observing individual m is simply the 111 

relative frequency of this individual’s multi-locus genotype in the ith stock, which we denote by f(Xm|Qi), 112 

where: 113 

 114 

 Because zmi’ = 0 for all i’ ≠ i, the full genotypic likelihood may be expressed as: 115 

 116 

In addition to the genotypic data, we need to consider the likelihood of the baseline data, which can be 117 

written as: 118 

 119 

The full likelihood, L(X,Y|Q,Z), is simply the product of these two components. 120 

Multiplying this likelihood by the prior distributions leads to the following posterior distribution: 121 

 122 

The benefit of using the chosen prior distributions is that the conditional posterior distribution for each of 123 

the parameters given the data and the remaining parameters is of the same form as the prior distribution 124 

(conjugacy).  This property makes them easy to sample from within a Gibbs sampler, which proceeds as 125 

follows: first, starting with initial values for P and Q, we draw stock identities for each of the mixture 126 

individuals from: 127 

 128 

Next, given these stock identities, P is drawn from:   129 
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 130 

Finally, for each stock and for each locus, we generate Qid from: 131 

 132 

This process is repeated for several thousand iterations, typically with multiple chains starting from 133 

different initial values, and the first few thousand iterations are discarded as “burn-in” to remove the 134 

influence of the initial values. Multiple chains are run to assess convergence via the Gelman-Rubin shrink 135 

factor (Gelman and Rubin, 1992). By convergence, we mean convergence in distribution rather than 136 

convergence to a point.  137 

 138 

Regional Allocation Model 139 

The data for this model are exactly the same as for the Pella-Masuda model, except the baseline is framed 140 

within a hierarchy in which regions are defined and stocks are assigned to them. Denote ygkdj as the count 141 

of the jth allele for the dth locus of the kth stock in the gth region, and denote Y as the entire baseline. The 142 

mixture genotype data X remains the same.   143 

The structure of the stock proportions in the RAM is similar to that proposed by Okuyama and Bolker 144 

(2005). Let Rg be the regional contribution made by the gth region, and denote R as the vector of these 145 

contributions—notice that R must sum to one. We place a Dirichlet prior distribution on R with 146 

parameters γ such that γg = 1/G, with G being the number of regions.   147 

Denote Sgk as the within-region stock proportion for the kth stock in the gth region, and denote Sg as the 148 

vector of all Cg stock proportions within the gth region—again, notice that Sg must sum to one. We place 149 

a Dirichlet prior distribution on Sg with parameters δg, with δgk = 1/Cg. The ragged matrix of all stock 150 

proportions is represented by S. 151 

Like the baseline data, the baseline relative frequencies are also broken up, with qgkdj being the relative 152 

frequency of the jth allele for the dth locus of the kth stock in the gth region, and Q as the entire array of 153 

baseline relative frequencies. We place the same Dirichlet prior distribution on Qgkd as we placed on Qid in 154 

the previous model.  155 

We let rmg denote the regional identity for the gth stock for the mth mixture individual, where rmg equals 1 156 

if individual m belongs to the gth region, and zero otherwise. The vector of regional identities for the mth 157 

individual is denoted as rm, and the matrix of all regional identities is represented as r. A multinomial 158 

prior distribution is placed on rm with size one and probabilities equal to the regional contributions R.  159 

Finally, let zmgk be the within-region stock identity for the kth stock in the gth region for the mth mixture 160 

individual, where zmgk equals one if individual m belongs to the kth stock of the gth region, and zero 161 



WASSIP Technical Document 7:  Regional Allocation Model 

6 
 

otherwise.  Denote zmg as the vector of stock identities for the gth region for the mth individual, and let zm 162 

be the ragged matrix of stock identities for this individual. The ragged array of all stock identities is 163 

denoted as z. We place a multinomial prior distribution on zmg with size rmg and probabilities equal to Sg. 164 

Because rmg equals 1 if individual m belongs to the gth region, and zero otherwise, the only way the prior 165 

distribution of zmg can have positive size is if rmg equals one. In other words, the mth individual cannot 166 

belong to a stock that is outside that individual’s region. 167 

If we knew both the region and stock of origin for each mixture individual, the full genotypic likelihood 168 

can be expressed as: 169 

 170 

Here, we use I() as an indicator function that is equal to one if the argument is true, and zero otherwise. 171 

Similar to the previous model, the baseline likelihood can be written as: 172 

 173 

The full likelihood, L(X,Y|Q,r,z), is simply the product of these two components. Multiplying the 174 

likelihood by the priors gives the posterior distribution: 175 

 176 

From this distribution, we need to isolate the conditional distribution of each of the parameters.  However, 177 

rm and zm are closely linked and separating them is somewhat difficult.  Jointly, their conditional 178 

distribution is: 179 

 180 

To find the conditional distribution for rm, we need to marginalize over zm by recognizing that: 181 
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 182 

Therefore, we can draw rm from: 183 

 184 

Once we know which region the mth individual belongs to, we can draw zmg from: 185 

 186 

Next, given the regional identities, R is drawn from:   187 

 188 

Then, given the stock identities for each region, Sg is drawn from:   189 

 190 

Finally, for each stock within each region and for each locus, we generate Qgkd from: 191 

 192 

This completes one cycle of the Gibbs algorithm for the RAM. 193 

 194 

Simulations 195 

Analyzing multiple simulated mixtures with Bayesian methods is somewhat challenging because no 196 

“canned” software is available to conduct automated analyses. For this reason, we were limited in the 197 

number of mixtures that could be analyzed. To simulate each fish, we randomly selected the stock of 198 

origin from the appropriate region, then, for each locus, we drew a genotype from the multinomial 199 
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distribution using the observed baseline allele relative frequencies. We simulated 100 mixtures of 200 fish 200 

that were each composed of 100% Norton Sound chum, and analyzed them with a Western Alaska 201 

baseline. The baseline was composed of 53 SNPs and included 60 stocks representing 6 regions, 202 

including: Kotzebue Sound (5 stocks), Seward Peninsula (2 stocks), Norton Sound (12 stocks), Lower 203 

Yukon River (18 stocks), Kuskokwim River/Bay (17 stocks), and Bristol Bay (6 stocks). The mixtures 204 

were analyzed in three ways: 1) Pella-Masuda Model with the True Flat Prior; 2) Pella-Masuda Model 205 

with the Regional Flat Prior; and 3) Regional Allocation Model. The Pella-Masuda analyses were 206 

conducted in the R programming language utilizing the package BRUGS. The RAM analyses were also 207 

conducted within an R program, but the program called upon a C++ function that was developed at the 208 

Gene Conservation Laboratory to speed up analysis. For each mixture, one chain was run for 30,000 209 

iterations, discarding the first 5,000 as burn-in. From the 25,000 iterations that were retained, posterior 210 

means of the stock proportions and the regional proportions were calculated. Also calculated were the 211 

means, central 90% quantiles, and root mean square errors of the 100 posterior means.   212 

 213 

Results 214 

 215 

The mean and central 90% of the Norton Sound proportions for the Pella-Masuda model TFP, the Pella-216 

Masuda model RFP, and the RAM were 0.831 (0.686-0.929), 0.834 (0.696-0.932), and 0.880 (75.7-217 

0.949), respectively (Table 1; Figures 2-4), and the root mean square errors were 0.091, 0.088, and 0.063, 218 

respectively (Table 1). For the Pella-Masuda model, while both the TFP and the RFP showed very similar 219 

amounts of misallocation, the RFP tended to shift some of the misallocation away from the regions with 220 

the most stocks and into regions with fewer stocks (Figures 2-3). The RAM showed less misallocation 221 

than both prior structures of the Pella-Masuda model in terms of point estimate and tightness of the 222 

central 90% quantiles, and tended to flatten out the amount of misallocation more evenly across the 223 

remaining regions (Figure 4).  224 

 225 

Discussion 226 

 227 

The RAM appeared to be moderately successful in reducing the non-uniform bias due to the unequal 228 

distribution in the number of stocks among the regions, much more so than the Pella-Masuda model with 229 

the RFP. Comparing Figure 4 with Figures 2 and 3 shows that the misallocation to the regions represented 230 

by larger numbers of stocks (i.e. Yukon and Kuskokwim) was somewhat reduced. We suspect that the 231 

larger misallocation to these regions that persisted with the RAM were due to the fact that these are more 232 

genetically similar to Norton Sound than the other regions, and less due to failure of the RAM to reduce 233 

the non-uniform bias. The dendrogram shown in Figure 5 supports this suspicion. Another improvement 234 

of the RAM was that the width of the central 90% quantiles was somewhat narrower. This reduction in 235 

variation about the expected value, in addition to the reduced bias, equates to an improvement of the 236 

estimator’s mean square error (Table 1). While the RAM still failed to achieve the 90% mark that the 237 

Gene Conservation Laboratory strives to attain, overall it performed better than either of the Pella-238 



WASSIP Technical Document 7:  Regional Allocation Model 

9 
 

Masuda models in this tough situation.  The addition of new SNP markers to the RAM may provide the 239 

resolution to meet the 90% mark.   240 

The rationale for why the RAM was expected to reduce the non-uniform bias can be seen by inspecting 241 

the regional identity probability: 242 

 243 

This probability is a product of the regional contribution and a weighted average genotypic frequency, 244 

with the weights summing to one. Because the weights sum to one, the genetic component of this 245 

probability, i.e. the weighted average genotypic frequency, remains comparable regardless of the number 246 

of stocks within the region, which levels the playing field. The effect of this was seen in our simulation 247 

results. In our simulations, every mixture individual belonged to Norton Sound. Under the Pella-Masuda 248 

model, when allocating the mth fish at each cycle, all 60 stocks competed for allocation of this fish. As 249 

can be seen in Figures 2 and 3, the larger regions were more successful at gaining this allocation simply 250 

because they have more stocks to compete with. However, under the RAM, when allocating the fish, only 251 

6 regions were competing for allocation, each acting a single unit.  252 

A further benefit is that the regional proportions are directly given a prior distribution, which allows the 253 

transmission of prior information at the regional level in a straight forward manner. This has great 254 

potential for modeling prior information in hierarchical models where there is often not enough 255 

information to adequately estimate hyperparameters for each of the individual stocks.  256 

The RAM presented here is extended to only two levels of hierarchy of stocks within regions. However, it 257 

is conceivable to expand this model to further levels of hierarchy, such as sub-stocks within stocks, and 258 

stocks within regions. Such a model may be useful in situations where multiple levels of structure exist. 259 

      260 
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 283 

Technical Committee review and comments 284 

WASSIP Technical Document 7  Regional Allocation Model (RAM) 285 

 286 

This documents outlines and tests the performance of two modifications of the Pella-Masuda stock 287 
composition estimation algorithm, applying them to 100% single stock samples from the Western Alaska 288 
chum salmon genetic baseline. One approach (the Regional Flat Prior) modifies the prior probabilities 289 
assigned to the model, while another (the Regional Allocation Model) modifies the model structure to 290 
incorporate the regional identities. Both approaches reduce the overallocation of samples to regions 291 
comprising many stocks, but the RAM performs better than the RFP. 292 

 293 

Overall, this is a very nice exposition and test of an extension of the Pella-Masuda model, and 294 
convincingly demonstrates that, at least under some conditions, this extension will improve 295 
performance of regional allocations from stock mixtures.  The TC was encouraged to see this interesting 296 
idea developed into a form that could easily be modified as a journal submission.  We think the novel 297 
approach will provide useful options for conducting GSI.  For publication in a journal (and this paper 298 
merits it), it would be nice to generalize the results beyond Western AK chum by drawing genetic 299 
samples from simulated stocks. In simulations, the genetic similarity among stocks could be controlled, 300 
and the effects of the number of stocks sampled from a region isolated from the effects of similarity of 301 
stocks within and among regions. 302 

 303 

Although we did not identify any major flaws in the analyses, there are some issues regarding ghost 304 
populations and the appropriate priors that need further consideration.  The general problem the RAM 305 
is intended to address is cumulative upward bias in estimated contributions of stocks that in reality 306 
contribute very little, or nothing, to the mixture.  The bias is a type of edge effect that arises because 307 
individual stock estimates are constrained to the biologically plausible range 0-1; if the true value for a 308 
particular stock is 0, there is no possibility of balancing the occasional over-estimate by a negative one, 309 
and the result is upward bias (and hence downward bias in estimating contributions of stocks that 310 
actually do contribute substantially to the mix).  Empirically, the bias is known to increase with the 311 
number of non-contributing stocks in a baseline.  The bias is also positively correlated with uncertainty; 312 
if source populations are very divergent genetically (and assuming adequate sample sizes from the 313 
fishery), stock contributions can be determined with high precision and the resulting bias is small.  With 314 
poorly differentiated stocks, cumulative mis-assignments to stocks that actually do not contribute to the 315 
mix can be substantial.  Also, in the case of uncertain stock assignments, priors used in the Bayesian 316 
analysis can assume a relatively greater importance and can significantly influence results. 317 

 318 

The general scenario that the RAM is appropriate to address is the following.   319 

 Stocks are organized hierarchically into 2 or more regions or Reporting Groups (RGs). 320 



WASSIP Technical Document 7:  Regional Allocation Model 

12 
 

 The RGs have the same number of actual populations but different numbers of populations that 321 
have been sampled for the baseline. 322 

 A flat prior of stock contribution is computed as 1/n, where n is the total number of populations 323 
in the baseline. 324 

 In this scenario, the RGs that have the most populations in the baseline will tend to attract the 325 
most spurious contribution assigned to low- or non-contributing stocks. 326 

The solution to this problem proposed by Technical Document 7 is two-fold: 327 

1. Ensure that each RG has the same overall prior, and within each RG ensure that each stock has 328 
an equal prior.  This means that stocks in RGs with different numbers of populations in the 329 
baseline have different priors. 330 

2. First determine which RG a fish is from, then which stock within the RG. 331 
 332 

The second item in the list above is the novel feature of this document, and we think it merits 333 
publication.  However, we question whether the idea of forcing each RG to have an equal overall prior is 334 
a general solution to the problem described.  In fact, we can find little support for the idea that, in 335 
general, different RGs should have the same prior.  Rather, we think the priors for each RG should 336 
reflect the relative probability that a given fish in the mix can be expected to come from the RG.  The 337 
appropriate prior should reflect, among other things, the actual number of populations in each RG, the 338 
size of each population, the proximity to the location of the fishery sample, and things such as migration 339 
routes. 340 

 341 

Consider the following scenario: 342 

 Stocks are organized hierarchically into 2 or more regions or RGs. 343 

 The RGs have different numbers of actual populations, and each actual population has been 344 
sampled for the baseline. 345 

 Each population has the same size and productivity. 346 
Under this scenario, the appropriate priors for each RG are proportional to the number of stocks in the 347 
baseline, and enforcing equal RG priors as in item 1) above could be expected to reduce accuracy of the 348 
estimates. 349 

 350 

We therefore believe that the issue of appropriate priors needs more careful consideration, and these 351 
considerations should include not only the number of populations in the baseline but also the number of 352 
actual populations and perhaps information about each population.  Real populations that are not 353 
sampled in a population genetics study are called ghost populations (Beerli 2004), and it is known that 354 
they can profoundly affect results of statistical analyses.  Based on results obtained by Slatkin (2005), it 355 
likely will be difficult or impossible to develop a general formula that captures the effects of ghost 356 
populations on GSI estimates.  This suggests that the most appropriate priors for use in GSI should be 357 
evaluated on a case-by-case basis. 358 

 359 

For the particular case of separating stocks in mixtures taken from the WASSIP study area, the authors 360 
might think about the potential for using semi-informative priors, and investigate whether the priors 361 
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have an appreciable effect on the results. For example, abundance varies greatly among the 362 
stocks/regions investigated; proximity of these stocks to the WASSIP area varies as well, and there is 363 
some rudimentary oceanic distribution information from tagging studies. Hopefully, the results aren’t 364 
too sensitive to the priors on stock composition, but if they are, these priors should receive careful 365 
attention.  In case of sensitivity, priors should be chosen based on the best biological information and 366 
possibly partially on management priorities.  The effects of priors on estimates for small stocks should 367 
get particularly careful consideration.  If the priors weight each region equally, and some of these small 368 
stocks get treated like a region, the priors could potentially dominate the results and strongly 369 
overweight their contributions. 370 

 Specific comments keyed to line number: 371 

28: this is true only if some method has been used to account for unsampled alleles 372 

 373 

51: isn’t this a null hypothesis rather than an assertion? 374 

 375 

150:  is ragged matrix a real term? 376 

 377 

185:  “once we know …”  … do you mean, “once we have estimated”? 378 

 379 

208:  what exactly did the C++ routine do? 380 

 381 

247: we agree that in the example chosen, the new method helps to “level the playing field.”  However, 382 
as discussed above, forcing equal RG priors is not a sound general strategy for leveling the playing field. 383 

 384 

Figure 1:  how was the individual stock of origin for each Norton Sound fish in the simulated mixtures 385 
chosen? 386 

 387 

How does the new method perform with different sampling fractions?   And more realistic mixtures? 388 

 389 

For publication in a journal, more context needs to be provided. For instance, the type of genetic 390 
characteristics comprising the baseline isn’t specified. 391 

 392 

 393 

394 
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 395 

Table 1. Simulation results and root mean square error (rMSE) for 100 mixtures of 100% Norton Sound 396 

chum for the Pella-Masuda Model with the True Flat Prior (P-M TFP), the Pella-Masuda Model with the 397 

Regional Flat Prior (P-M RFP), and the Regional Allocation Model (RAM).   398 

 399 

Region P-M TFP P-M RFP RAM

Kotzebue Sound 0.012 0.018 0.014

Seward Pen 0.004 0.011 0.010

Norton Sound 0.831 0.834 0.880

Lower Yukon 0.064 0.049 0.036

Kuskokwim 0.076 0.065 0.041

Bristol Bay 0.012 0.022 0.019

rMSE 0.091 0.088 0.063  400 

 401 
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 403 
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 404 

Figure 1.   Simulation results for 100 mixtures of 100% Norton Sound chum for the Pella-Masuda Model 405 

shown at the individual stock level. The height of the bars represents the mean of 100 repetitions. An 406 

equal prior “count” of one divided by the number of stocks was given to each stock.  407 
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 409 

Figure 2.  Simulation results for 100 mixtures of 100% Norton Sound chum for the Pella-Masuda Model 410 

using the True Flat Prior.  The height of the bars represents the mean of 100 repetitions.  Vertical bar 411 

represents the central 90%.  Horizontal bar is the 90% line.  Numbers under labels are the number of 412 

stocks within the region. These results are the same as shown in Figure 1 with the stock proportions 413 

summed into regions.  414 

 415 
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Pella-Masuda Model - Regional Flat Prior
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 419 

Figure 3.  Simulation results for 100 mixtures of 100% Norton Sound chum for the Pella-Masuda Model 420 

using the Regional Flat Prior.  The height of the bars represents the mean of 100 repetitions.  Vertical bar 421 

represents the central 90%.  Horizontal bar is the 90% line.  Numbers under labels are the number of 422 

stocks within the region.  423 
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 427 

Figure 4.  Simulation results for 100 mixtures of 100% Norton Sound chum for the Regional Allocation 428 

Model.  The height of the bars represents the mean of 100 repetitions.  Vertical bar represents the central 429 

90%.  Horizontal bar is the 90% line.  Numbers under labels are the number of stocks within the region.    430 
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 435 

Figure 5. UPGMA tree of pair-wise FST for 60 stocks of Western Alaska chum demonstrating that Norton 436 

Sound chum are more genetically similar to Lower Yukon and Kuskokwim than the other regions. 437 


